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Abstract

Effects of elongation on the electric resistance of graphite–EVA(ethylene-acetate copolymer) systems were studied. It was found that a
linear relation holds between the logarithm of electric resistance and elongation. We have made a simulation with tunneling junction-model.
Namely, we have assumed that the system consists of many tunneling junctions which form series and parallel circuits through the system
and that widths of tunneling potentials proportionally increase with elongation. The result of the simulation agrees with experiment: a linear
relation holds between the logarithm of electric resistance and elongation. This implies that tunneling conduction plays an important role in
carbon–polymer systems. However this result raises a new problem on the mechanism of switching which was thought to have been solved
already.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is known that crystalline polymer–carbon composites
show switching behavior, namely their electric resistances
are lower at lower temperatures but increase abruptly from
certain temperatures (switching temperature). Ohe et al.
have reported earlier the graphite–polyethylene–wax
composite as a switching system and they ascribed the
mechanism of switching not to thermal expansion of the
bulk but to a small displacement of graphite grains [1].
Subsequently, Buche has reported switching systems and
he has suggested that the mechanism of switching could
be thermal expansion of the bulk polymer [2,3]. Since
then ‘‘thermal volume expansion’’ seems to be believed
as the mechanism of switching, although Meyer has raised
a question about this [4]. On the other hand, an exceptional
system has been reported where the mechanism of switching
is neither thermal expansion nor tunneling [5–7]. However,
the importance of the tunneling effect in carbon–polymer
systems has been clearly demonstrated by Miyauchi et al.
[8]. Unfortunately, in Ref. [8], no mechanism is described
concerning switching.

Experimentally it is well known that crystalline polymers
show switching when dispersed with carbon but that

amorphous polymers do not. Thus, quick change in the
density at the melting temperature seems necessary for
switching. This seems to favor ‘‘thermal expansion’’ for
the mechanism of switching. Therefore it would be interest-
ing to see whether mechanical expansion could cause
change in electric resistance as is seen in the case of thermal
expansion. Unfortunately, no trial has been made hitherto to
investigate the relation between the expansion and electric
resistance. We will report here the relation between the
elongation and electric resistance of a carbon–polymer
system. The purpose of this research is not only to clarify
the mechanism of the switching but also try to make strain
sensors which can be applied to steel frames in buildings,
ships, ‘‘mega-floats’’ and so on.

2. Experimental

2.1. Materials

Graphite (GC) was J-SP from Nihon Koku-en (average
particle size 6 mm). Ethylene-vinyl acetate copolymer
(EVA, polyethylene: 80%) from Toso was used.

2.2. Sample preparation

EVA was dissolved in toluene, mixed with the desired
amount of graphite, and toluene was evaporated. This
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composite was subjected to hot press and a sheet (100×
100 × 1.5 mm) of the composite was obtained. Samples
were obtained from this sheet by cutting into a dumbell
shape and painting both ends with silver paint (Dodite D-
551, Fujikura Kasei) as electrodes. The center part of the
samples which were subjected to elongation was 10 mm in
width and 25 mm in length.

2.3. Measurement of elongation and electric resistance

Apparatus for the measurement of elongation and electric
resistance was order-made (hardware: Kawachi Tekkou,
Kasugai; software: Step-One, Nagoya). Elongation power
was generated by a pulse motor which was computer-
controlled. Elongation was measured by a digital gauge
(LY41, Sony) with a sensor (DE30R). Electric resistance
was measured by a digital multimeter (Advantest
R6452A). Both signals from the gauge and the multimeter
were taken simultaneously into a computer (NEC PC-9821
V16). Precision of elongation was 1mm and the speed of
elongation was 3mm/s.

3. Results and discussion

Fig. 1 shows logarithm of electric resistance as a function
of elongation in the 30 wt% GC–EVA system. As is shown
in Fig. 1, a linearity is seen in the relation between the
logarithm of the electric resistance and the elongation. In
order to explain this relation, a theory of tunneling effect can
be applicable. Simmons [9] has derived an equation of
tunneling current density at the low voltage region as,

J � �3�2mw�1=2=2s��e=h�2V·exp�2�4ps=h��2mw�1=2� �1�
wherem, e andh are the electron mass, charge on an elec-
tron and Planck’s constant, respectively, andw , s, V are the
height of tunnel potential barrier, the barrier width and the
voltage applied across the barrier, respectively. From Eq.
(1) resistivity can be derived and the logarithm of the resis-
tivity (r ) is expressed as a function of the width of the
tunneling barrier (s) as,

log�r� � �4p=h��2mw�1=2s2 log�{3�2mw�1=2=2}�e=h�2� �2�
This shows that the logarithm of the resistivity of tunneling
junction is a linear function of the potential width. If a
sample is composed of a single tunneling junction and the
potential width of the junction increases proportionally with
elongation, then the relation between the logarithm of the
resistivity and the elongation is linear. However, since an
enormous number of carbon grains are dispersed in a
sample, there exist many tunneling junctions composed of
gaps between GC grains. In order to see whether the linear-
ity between the logarithm of resistance and elongation as
shown in Fig. 1 is explicable by the tunneling mechanism, a
simulation was performed taking many tunneling junctions
into consideration.

As a first step we have used a series circuit model where
the sample was expressed as a single circuit of series tunnel-
ing junctions. Then the resistance of the series circuit was
calculated as a function of elongation of tunneling widths,
assuming that widths of potential barriers increase propor-
tionally with elongation. Since GC grains are randomly
dispersed in a sample, it would be better to consider some
distribution for grain gaps, namely widths of tunneling
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Fig. 1. Logarithm of electric resistance vs. elongation in the 30 wt% GC–
EVA system.

Fig. 2. The calculated value of the logarithm of electric resistance vs.
elongation. The number of parallel circuits (N) and junctions in a series
circuit (M) are 100 and 20, respectively. The values of standard deviations,
sp ands si, are 0.2m and 0.1mpi, respectively. The inset shows the equiva-
lent circuit, where–h– shows a tunneling junction.



potential barriers. A Gaussian function was used for the
distribution of potential widths of tunneling barriers.
Namely, expressing the number of tunneling junctions as
Ns, the distribution of the potential widths (x1, x2, …, xn)
can be expressed by a Gaussian function with the mean
value (m ) and the standard deviation (s s). Values of Ns

ands s are set as parameters then the value ofm was selected
in order to obtain the best fit between the calculation and the
experiment, where the ratio of the resistance without
elongation (Ro) to that with 10% elongation (R10) was calcu-
lated and compared with the experimental value, which was
obtained from Fig. 1 to be 5.1754× 1023. Calculation was
performed using several values forNs ands s. In every case
it was found that linearity holds between the logarithm of
resistance and the elongation. It was also found that only a
very few numbers of junctions of the distribution edge (the
narrowest width edge) determine the resistance of the series
circuit. This fact lead us to the next step.

The series circuit described above is inadequate to
express the real sample. Therefore a parallel equivalent
circuit is used. This is shown as an inset to Fig. 2. A contra-
diction may be raised that junctions must be combined hori-
zontally across parallel circuit to form a check (or grid)
pattern. We think this is not necessary: In a grid circuit, a
net horizontal current is zero. Thus, microscopically, a path
of current could be a dendrite (tree) shape or a
combination of those. From the view point of an electric
circuit a circuit of dendrite shape can be expressed as a
parallel circuit. Another contradiction may be that an
equivalent circuit should be three dimensional. However,
a three dimensional parallel circuit can be expressed by a
combination of two dimensional circuits. From the view
point of an electric circuit, both are the same. Therefore
the parallel circuit shown in Fig. 2 could be used for the
present purpose. The important point is that a diversity of
potential widths must be fully taken into account.

In order to take the diversity of potential widths of tunnel-
ing junctions, the equivalent circuit shown in Fig. 2 was
used, where series circuits, numbered as 1, 2, …,i, …,
and Np, are connected in parallel. Each circuit consists of
Ns junctions connected in series. Now let the mean potential
width through the system bem and the mean potential width
in ith circuit bem i, wherei is 1, 2, …,Np. Namely, the mean
value form1, m2, …, andmNp is m . Let the standard devia-
tion for m1, m2, …, andmNp besp. We set the values ofm1,
m2, …, andmNp asm 2 3sp, m 2 3sp 1 (6sp/Np), m 2 3
1 2(6sp/Np), …, m 2 3 1 (i 2 1)·(6sp/Np), …, andm 1
3sp, respectively. This means that the mean values of paral-
lel circuits distribute fromm 2 3sp to m 1 3sp depending
on Gaussian. Now let potential widths ofith series circuit be
xi1, xi2, …, xij, …, and xiNs, respectively. Since the mean
value for xi1, xi2, …, xij, and xiNs is m i, these potential
widths are set to bemi 2 ssi , mi 2 ssi 1 �2ssi =Ns�;…,
mi 2 ssi 1 �j 2 1�·(2s si,/Ns), …, and m i 1 s si, respec-
tively, where s si is the standard deviation of potential
widths in the ith circuit. By the procedure described

above the diversity of potential widths of tunneling
junctions is satisfied.

The conductivity ofith parallel circuit (Yi) is given as
follows,

Yi � S��A=ss�exp�2�mi 2 xij �2=2s2
si�exp{2�4pmsj =h�

� �2mw�1=2} � �3�
wherew is assumed to be 5 eV andA is a constant, which
disappears in the final stage. The net conductance (Ytot) is
given from the summation of Eq. (3).

Ytot �
X
�1={ �2p�1=2sp} �exp�2�m 2 mi�2=2s2

p�Yi �4�
In both equations Gaussian distribution is taken into
account.

The simulation was carried out as follows. Instead of the
conductance in Eq. (4), the ratio of the resistance without
elongation to that with 10% elongation was concerned. The
resistance without elongation (Ro)calc is given by the inverse
of Eq. (4). The resistance of 10% elongation (R0.1)calc is
given by the same procedure by multiplying,m , s si and
sp by 1.1. In the calculation,s si andsp are given bys si �
fsm i and sp � fpm . We set values ofNs, Np, fs and fp as
parameters. Thenm is the only unknown value in Eq. (4).
Therefore the ratio,g calc� [(R)0/(R)0.1]calc, includes only one
unknown value ofm . Thus,m can be obtained by solving the
equation below, where the left side of Eq. (5) is the experi-
mental value,gexpl � 5.1754× 1023 as described already.

�Ro=R0:1�calc� 5:1754× 1023 �5�
The solution was obtained by computational work. In this
calculationu(g calc 2 gexpl)/gexplu was less than 10215, which
means that Eq. (5) is actually satisfied. Using the selectedm
electric resistances are calculated as a function of elonga-
tion. One of the results is shown in Fig. 2 where numbers of
tunneling junctions (Ns andNp) are 20 and 100, respectively,
and standard deviations,sp ands si, are 0.2m and 0.1mpi,
respectively. As is seen in Fig. 2, the linear relation holds
between the logarithm of electric resistance and elongation
in the equivalent circuit which consists of many tunneling
junctions. The calculations were performed using various
values ofNs, Np, fp and fsi. In all cases the linear relation
between logarithm of electric resistance and elongation was
always obtained.

The detail of the calculation was reviewed. It was found
that in a circuit, which consists of barriers connected in
series, barriers with widths which are close to the widest
determine the electric resistance of the series circuit and that
parallel circuits of which mean barrier widths are close to
the minimum determine the electric resistance of the total
system. In the calculation in Fig. 2 the mean potential width
in the system (m ) was obtained to be 5.4 nm. However, it
was found that junctions with the barrier width of, 2 nm
actually determine the electric resistance of the system.
Calculation was done using various values ofsp (fp).
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Although m changes depending onsp, barrier widths
responsible for the electric resistance of the system are
always , 2 nm. This implies that tunneling barrier widths
which determine the electric resistance of the present
system could be, 2 nm. This corresponds to the values
suggested by Ohe (0.5–2.5 nm) [1].

As is described already, in an equivalent circuit as shown
in Fig. 2 parallel circuits of which resistances are close to
the minimum actually determine the resistance of the total
system. Electric current flows through paths of low resis-
tance (narrow potential width). At the same time, the resis-
tance of a single path composed of series electric resistances
is determined by high resistance (wide potential width).
This means that potential widths (gaps between carbon
particles) which determine the resistance of the total system
are far from the mean value. Namely, in the Gaussian distri-
bution curve, only the edge part contributes to the electric
conduction and the main part around the mean value does
not. This indicates that the electric resistance of such
systems cannot be discussed from a view point of ‘‘aver-
age’’. Generally it is frequently noticed that a property of a
material system reflects mean values of components. If a
property of a system is related directly to a mean value of
components, the determination of parameters,m and s ,
would be useful and meaningful. Unfortunately, in the
present case it would be difficult to obtain values ofm
and s for gaps between particles, although it is possible
to obtainm ands for particle sizes. However, in the present
situationm does not seem important for electric conduction.
The purpose of the calculation described above is to demon-
strate that a linearity holds between the logarithm of the
electric resistance and the elongation. The linearity was
confirmed for systems with variety ofs .

In the case of thermal expansion, it is reported that a

linear relation holds between the logarithm of electric resis-
tance and the increment of the volume [10]. This seems
similar to our results. We have also measured the electric
resistance of 30 wt% GC–EVA systems as a function of
temperature and found the ratio of the electric resistances
at the switching temperatures to that at room temperature
was 3.84 × 105. Volume expansion at the switching
temperature could be at most, 20% which results in linear
expansion of 6–7%. However, the ratio of electric resis-
tances at 7% and 0% expansion is obtained from Fig. 1 to
be 43. So the difference between thermal and mechanical
expansion is about four orders of magnitude. As is described
already, in an earlier stage thermal expansion was rejected
[1] or thought to be suspicious for the mechanism of switch-
ing [4]. The difference in electric resistance ratios between
thermal and mechanical expansion raises here a new
problem. The mechanism of switching may not be thermal
expansion. Or, all gaps between GC grains may not expand
proportionally with elongation. At present, no answer is
available on these points. Further studies are necessary to
clarify these.
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